Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(5-Chloro-2-hydroxybenzylidene)-4-(8-quinolyloxy)butanohydrazide monohydrate

Jian Zhang, Guo-Lun XiaHou, Sheng-Sen Zhang and Jing Zeng*

College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, People's Republic of China Correspondence e-mail: zengjinggnmu@yahoo.cn

Received 12 June 2009; accepted 20 June 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.011 Å; R factor = 0.079; wR factor = 0.198; data-to-parameter ratio = 11.6.

The crystal of the title Schiff base compound, C₂₀H₁₈ClN₃O₃.- H_2O , was twinned by a twofold rotation about (100). The asymmetric unit contains two crystallographically independent molecules with similar conformations, and two water molecules. The C=N-N angles of 115.7 (6) and 116.2 (6) $^{\circ}$ are significantly smaller than the ideal value of 120° expected for sp^2 -hybridized N atoms and the dihedral angles between the benzene ring and quinoline ring system in the two molecules are 52.5 (7) and 53.9 (7)°. The molecules aggregate via C- $Cl \cdot \cdot \pi$ and $\pi - \pi$ interactions [centroid–centroid distances = 3.696 (5)–3.892 (5) Å] and weak C–H···O interactions as parallel sheets, which are further linked by water molecules through $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds into a supramolecular two-dimensional network.

Related literature

For background to the rational construction of new matallosupramolecular architectures, see: Muraoka et al. (1998); Cai et al. (2003); Pallavicini et al. (2007). For the use of 8-hydroxyquinoline and its derivatives as ligands in this area, see: Chen et al. (2005); Park et al. (2006); Karmakar et al. (2007). For related structures, see: Xu et al. (2002); Zhang et al. (2005); Wen et al. (2005); Wei et al. (2004); Zheng, Li et al. (2008); Zheng, Wu, Lu et al., (2006); Zheng (2006); Zheng, Qiu et al. (2006); Zheng, Wu, Li et al. (2007); Xie et al. (2008); Chen & Li (2009). For comparative bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

 $V = 3820 (2) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.32 \times 0.15 \times 0.10 \text{ mm}$

17043 measured reflections

5912 independent reflections

3796 reflections with $I > 2\sigma(I)$

 $\mu = 0.23 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.093$

Z = 8

Experimental

Crystal data

C20H18CIN3O3·H2O $M_{\rm w} = 401.84$ Monoclinic, Cc a = 11.167 (3) Å b = 11.150 (3) Å c = 30.909 (10) Å $\beta = 96.970 (12)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan

(SADABS; Sheldrick, 1996) $T_{\min} = 0.929, \ T_{\max} = 0.977$

Refinement

$P[E^2 > 2\pi(E^2)] = 0.070$	II atom nonomatons constrained
K[T > 20(T)] = 0.0/9	n-atom parameters constrained
$wR(F^2) = 0.198$	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
S = 1.02	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ \AA}^{-3}$
5912 reflections	Absolute structure: Flack (1983),
508 parameters	2525 Friedel pairs
2 restraints	Flack parameter: 0.08 (13)

Table 1 H

Iydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots O7^{i}$	0.86	2.07	2.836 (9)	147
$N5 - H5 \cdots O8^{ii}$	0.86	2.05	2.820 (9)	149
O3−H3···N3	0.82	1.92	2.630 (8)	144
D6−H6···N6	0.82	1.91	2.633 (9)	147
O7−H29···N1	0.85	2.05	2.876 (8)	165
$O7 - H30 \cdot \cdot \cdot O5^{iii}$	0.85	2.06	2.839 (9)	153
O8−H31···N4	0.85	2.04	2.872 (9)	166
$D8 - H32 \cdot \cdot \cdot O2^{iv}$	0.85	1.99	2.845 (9)	180
$C7 - H7 \cdots O6^{iii}$	0.93	2.53	3.267 (10)	137
$C27 - H27 \cdots O3^{v}$	0.93	2.56	3.303 (10)	137
$C19-Cl1\cdots Cg5^{vi}$	1.74 (1)	3.63 (1)	4.127 (9)	94 (1)
$C39-Cl2\cdots Cg1^{vii}$	1.76 (1)	3.62 (1)	4.109 (9)	93 (1)

Symmetry codes: (i) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $x, -y, z + \frac{1}{2}$; (v) $x, -y, z + \frac{1}{2}$; (vi) $\bar{x}, -y + 1, z - \frac{1}{2}$; (vii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$. CgI and Cg2are the centroids of the N1/C8/C7/C6/C5/C9 and N4/C28/C27/C26/C25/C29 rings, respectively.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Key Laboratory for Research and Development of Natural Drugs of Jiangxi Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2173).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, Y. P., Zhang, L., Shi, J. L., Zhang, H. X. & Kang, B. S. (2003). Chin. J. Struct. Chem. 22, 587–590.
- Chen, C. L., Goforth, A. M., Smith, M. D., Gemmill, W. R., Su, C. Y. & Loye, H. C. (2005). J. Cluster Sci. 16, 477–487.
- Chen, M.-E. & Li, J.-M. (2009). Acta Cryst. E65, o295.
- Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379-389.

- Muraoka, M., Ueda, A., Zhang, W., Kida, T., Nakatsuji, Y., Ikeda, I., Kanehisa, N. & Kai, Y. (1998). *Tetrahedron Lett.* **39**, 9493–9496.
- Pallavicini, P., Boiocchi, M., Dacarroa, G. & Mangano, C. (2007). *New J. Chem.* **31**, 927–935.
- Park, K. M., Moon, S. T., Kang, Y. J., Kim, H. J., Seo, J. & Lee, S. S. (2006). *Inorg. Chem. Commun.* 9, 671–674.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wei, T.-B., Zhou, Y.-Q., Zhang, Y.-M. & Zong, G.-Q. (2004). Acta Cryst. E60, 0678–0680.
- Wen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045– o2046.
- Xie, H., Meng, S.-M., Fan, Y.-Q. & Yang, G.-C. (2008). Acta Cryst. E64, o2114.
- Xu, A.-W., Cai, Y.-P., Zhang, L.-Z., Su, C.-Y. & Kang, B.-S. (2002). Acta Cryst. E58, m770–m771.
- Zhang, S.-S., Wen, Y.-H., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, 03682-03683.
- Zheng, Z.-B. (2006). Acta Cryst. E62, 05146-05147.
- Zheng, Z.-B., Li, J.-K., Sun, Y.-F. & Wu, R.-T. (2008). Acta Cryst. E64, o297.
- Zheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913–o1914.
- Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Lu, J.-R. (2007). Acta Cryst. E63, 03284.Zheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, 04293–04295.

Acta Cryst. (2009). E65, o1695-o1696 [doi:10.1107/S1600536809023733]

(E)-N'-(5-Chloro-2-hydroxybenzylidene)-4-(8-quinolyloxy)butanohydrazide monohydrate

J. Zhang, G.-L. XiaHou, S.-S. Zhang and J. Zeng

Comment

The rational construction of new matallosupramolecular architectures using logical combinations of rigid linear and angular components, has been the subject of much study during the last decade (Muraoka *et al.*,1998; Cai *et al.*, 2003; Pallavicini *et al.*, 2007). Most commonly, nitrogen heterocycles have been used to provide donors for coordination to metals within these assemblies, with pyridine rings being by far the most frequently used. More recently, flexible ligands have been employed to obtain access to topologies that are not available using more rigid ligands. Such flexibility can be introduced by means of combinations of methylene, ether, or thioether spacer groups between the donor sites, which permit the ligand to exist in various combinations as a result of rotations about single bonds. 8-Hydroxyquinoline and its derivatives are among the most extensively investigated ligands in this area (Xu *et al.*, 2002; Cai *et al.*, 2003; Chen *et al.*, 2005; Park *et al.*, 2006; Karmakar *et al.*, 2007; Zhang *et al.*, 2005; Wen *et al.*, 2005, Wei *et al.*, 2004; Zheng, Li *et al.*, 2008). In this contribution, we present the synthesis and crystal structure of a new ligand, which contains oxygen and nitrogen donors and flexible aliphatic spacers.

The bond lengths and angles are in good agreement with expected values (Allen et al., 1987) and are comparable to those in the related compounds (Zheng, Wu, Lu et al., 2006; Zheng, 2006; Zheng, Wu, Li et al., 2007; Xie et al., 2008; Chen & Li, 2009). X-ray crystallography reveals that the title compound was twinned by a 2fold rotation about (100). The crystals contain two crystallographically independent molecules with similar conformations, and two water molecules. The conformation along the C1-O1-C10-C11-C12-C13-N2-N3-C14-C15 and C21-O4-C30-C31-C32-C33-N5-N6-C34-C35 bond sequence are all trans (Fig.1). The C14-N3 and C34—N6 bond lengths of 1.290 (9) and 1.283 (9) Å respectively, indicate the presence of a typical C=N. The CN—N angle of 115.7 (6) and 116.2 (6)° are significantly smaller than the ideal value of 120° expected for sp^2 -hybridized N atoms and the dihedral angles between the benzene ring and quinoline ring system in the two molecules are 52.5 (7) and 53.9 (7)°. This is probably a consequence of repulsion between the nitrogen lone pairs and the adjacent N atom (Zheng, Qiu et al., 2006). All torsion angles involving non-H atoms are close to 180°, which indicates that the molecules are essentially planar with the C=N bond adjacent to the benzene ring and quinoline group adopting a *trans* configuration with respect to its substitution. In the crystal packing, intramolecular O-H···N hydrogen bonds produce S(6) ring motifs (Bernstein et al., 1995) and there are also significant π -stacking interactions between the planar sections associated with the benzene ring and quinoline group. The organic molecules aggregate via intermolecular weak C—Cl $\cdot\cdot\pi$ and $\pi-\pi$ interactions between the benzene ring and quinoline rings [centroid-centroid distances in the range of 3.696 (5)–3.892 (5) Å] and weak C-H…O contacts into an array of parallel sheets, and these layers are further linked by water molecules via N-H···O and O-H···O hydrogen bonds into a supramolecular two dimensional network (Fig. 2 and Table 1).

Experimental

Reagents and solvents were of commercially available quality. The title complex was synthesized according to the method of Zheng, Li *et al.* 2008. 2-(quinolin-8-yloxy)butanehydrazide (0.01 mol), 5-chloro-2-hydroxybenzaldehyde (0.01 mol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask and refluxed for 6 h. After cooling to room

temperature, the solid product was separated by filtration. Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of a tetrahydrofuran solution over a period of 2 d.

Refinement

All H atoms were placed in idealized positions (C—H = 0.93-0.97 Å, N—H = 0.86 Å, O—H = 0.82-0.85 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure, with displacement ellipsoids at the 30% probability level.

Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.

(E)-N'-(5-Chloro-2-hydroxybenzylidene)-4-(8- quinolyloxy)butanohydrazide monohydrate

$C_{20}H_{18}CIN_3O_3 \cdot H_2O$	$F_{000} = 1680$
$M_r = 401.84$	$D_{\rm x} = 1.397 {\rm Mg m}^{-3}$
Monoclinic, Cc	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 2234 reflections
a = 11.167 (3) Å	$\theta = 2.6 - 18.8^{\circ}$
b = 11.150 (3) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 30.909 (10) Å	T = 295 K
$\beta = 96.970 \ (12)^{\circ}$	Block, yellow
$V = 3820 (2) \text{ Å}^3$	$0.32\times0.15\times0.10~mm$
<i>Z</i> = 8	

Data collection

Bruker SMART CCD area-detector diffractometer	5912 independent reflections
Radiation source: fine-focus sealed tube	3796 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.093$
T = 295 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$

$T_{\min} = 0.929, \ T_{\max} = 0.977$	$k = -12 \rightarrow 13$
17043 measured reflections	$l = -32 \rightarrow 36$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.079$	$w = 1/[\sigma^2(F_o^2) + (0.08P)^2 + 4.5P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.198$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
5912 reflections	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
508 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), 2525 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.08 (13)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.3021 (2)	0.92993 (19)	-0.10155 (8)	0.0771 (7)
C12	1.56704 (19)	0.7328 (2)	0.70372 (8)	0.0731 (7)
N1	1.1629 (5)	0.0908 (5)	0.18110 (18)	0.0446 (15)
N2	0.5924 (6)	0.4429 (6)	0.0353 (2)	0.0564 (17)
H2	0.5800	0.4886	0.0568	0.068*
N3	0.5489 (5)	0.4771 (6)	-0.0078 (2)	0.0513 (16)
N4	0.6334 (6)	-0.0301 (6)	0.4222 (2)	0.0503 (16)
N5	1.0354 (6)	0.4892 (6)	0.5686 (2)	0.0535 (17)
Н5	1.0744	0.5082	0.5472	0.064*
N6	1.0823 (5)	0.5171 (6)	0.6110 (2)	0.0520 (17)
01	0.9426 (4)	0.1745 (5)	0.16115 (17)	0.0575 (14)
O2	0.6701 (6)	0.2718 (6)	0.0137 (2)	0.0782 (19)
O3	0.4881 (6)	0.4409 (5)	-0.09162 (19)	0.0696 (17)
Н3	0.5252	0.4267	-0.0676	0.084*

O4	0.7248 (5)	0.1826 (4)	0.44221 (16)	0.0518 (13)
O5	0.8704 (6)	0.4003 (6)	0.59010 (19)	0.079 (2)
O6	1.0749 (5)	0.5481 (6)	0.69511 (19)	0.0669 (16)
Н6	1.0486	0.5333	0.6697	0.100*
O7	1.1208 (5)	0.1480 (5)	0.08981 (17)	0.0670 (16)
H29	1.1252	0.1199	0.1155	0.100*
H30	1.1950	0.1587	0.0878	0.100*
O8	0.7190 (5)	-0.0214 (6)	0.51354 (18)	0.0719 (17)
H31	0.6910	-0.0115	0.4869	0.108*
H32	0.7045	-0.0963	0.5137	0.108*
C1	0.9739 (7)	0.1482 (7)	0.2040 (2)	0.0491 (19)
C2	0.9014 (7)	0.1634 (7)	0.2365 (3)	0.052 (2)
H2A	0.8245	0.1956	0.2299	0.062*
C3	0.9426 (7)	0.1306 (7)	0.2795 (3)	0.0494 (19)
H3A	0.8926	0.1405	0.3012	0.059*
C4	1.0553 (7)	0.0845 (7)	0.2896 (2)	0.054 (2)
H4	1.0814	0.0616	0.3182	0.065*
C5	1.1329 (6)	0.0711 (7)	0.2572 (2)	0.0494 (19)
C6	1.2504 (7)	0.0246 (7)	0.2659 (3)	0.0471 (18)
H6A	1.2801	0.0017	0.2941	0.057*
C7	1.3212 (7)	0.0129 (7)	0.2331 (2)	0.050(2)
H7	1.3993	-0.0172	0.2384	0.060*
C8	1.2709 (7)	0.0487 (7)	0.1908 (3)	0.053 (2)
H8	1.3189	0.0413	0.1683	0.064*
C9	1.0930 (6)	0.1029 (6)	0.2136 (2)	0.0402 (17)
C10	0.8271 (7)	0.2281 (7)	0.1500 (2)	0.0493 (19)
H10A	0.8222	0.3022	0.1661	0.059*
H10B	0.7647	0.1744	0.1577	0.059*
C11	0.8075 (7)	0.2541 (7)	0.1009 (2)	0.051 (2)
H11A	0.8709	0.3061	0.0930	0.061*
H11B	0.8095	0.1799	0.0847	0.061*
C12	0.6870 (7)	0.3139 (8)	0.0903 (2)	0.058 (2)
H12A	0.6257	0.2627	0.1003	0.070*
H12B	0.6876	0.3885	0.1065	0.070*
C13	0.6523 (7)	0.3405 (8)	0.0430 (3)	0.056 (2)
C14	0.4998 (7)	0.5818 (7)	-0.0120(2)	0.0495 (19)
H14	0.4960	0.6297	0.0125	0.059*
C15	0.4508 (6)	0.6247 (6)	-0.0543(2)	0.0401 (16)
C16	0.4452 (7)	0.5569 (7)	-0.0923 (3)	0.055 (2)
C17	0.3957 (8)	0.6009 (7)	-0.1314 (3)	0.055 (2)
H17	0.3913	0.5530	-0.1562	0.067*
C18	0.3512 (7)	0.7182 (8)	-0.1345 (3)	0.057 (2)
H18	0.3180	0.7498	-0.1611	0.068*
C19	0.3579 (6)	0.7847 (7)	-0.0974(3)	0.0482 (19)
C20	0.4057 (7)	0.7447 (7)	-0.0576 (2)	0.0503 (19)
H20	0.4091	0.7938	-0.0331	0.060*
C21	0.6857 (6)	0.1661 (7)	0.3997 (2)	0.0416 (17)
C22	0.6908 (7)	0.2486 (7)	0.3667 (2)	0.0519 (19)
H22	0.7218	0.3249	0.3731	0.062*

C23	0.6492 (7)	0.2178 (8)	0.3234 (3)	0.052 (2)
H23	0.6553	0.2735	0.3014	0.063*
C24	0.6010 (7)	0.1103 (8)	0.3132 (3)	0.056 (2)
H24	0.5733	0.0922	0.2843	0.067*
C25	0.5925 (7)	0.0266 (7)	0.3452 (2)	0.0475 (18)
C26	0.5430 (7)	-0.0906 (7)	0.3365 (3)	0.0495 (19)
H26	0.5114	-0.1116	0.3083	0.059*
C27	0.5422 (8)	-0.1723 (7)	0.3701 (3)	0.055 (2)
H27	0.5105	-0.2488	0.3647	0.066*
C28	0.5896 (7)	-0.1386 (8)	0.4122 (3)	0.055 (2)
H28	0.5906	-0.1951	0.4344	0.066*
C29	0.6356 (6)	0.0495 (8)	0.3891 (2)	0.0471 (19)
C30	0.7820 (7)	0.2949 (7)	0.4533 (3)	0.054 (2)
H30A	0.7255	0.3599	0.4458	0.065*
H30B	0.8501	0.3055	0.4370	0.065*
C31	0.8249 (7)	0.2981 (7)	0.5017 (2)	0.0491 (19)
H31A	0.7567	0.2889	0.5181	0.059*
H31B	0.8805	0.2325	0.5093	0.059*
C32	0.8867 (8)	0.4158 (7)	0.5129 (3)	0.058 (2)
H32A	0.8319	0.4805	0.5031	0.070*
H32B	0.9564	0.4222	0.4971	0.070*
C33	0.9273 (7)	0.4315 (8)	0.5609 (3)	0.055 (2)
C34	1.1874 (7)	0.5652 (7)	0.6160 (2)	0.051 (2)
H34	1.2261	0.5797	0.5916	0.061*
C35	1.2463 (6)	0.5970 (6)	0.6576 (2)	0.0432 (17)
C36	1.1891 (7)	0.5900 (7)	0.6968 (2)	0.0480 (19)
C37	1.2494 (7)	0.6258 (8)	0.7354 (3)	0.057 (2)
H37	1.2118	0.6202	0.7606	0.068*
C38	1.3654 (7)	0.6702 (7)	0.7381 (2)	0.0488 (19)
H38	1.4055	0.6960	0.7646	0.059*
C39	1.4200 (7)	0.6753 (7)	0.7010 (3)	0.054 (2)
C40	1.3609 (7)	0.6448 (7)	0.6612 (3)	0.0502 (19)
H40	1.3985	0.6563	0.6363	0.060*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0964 (18)	0.0496 (12)	0.0808 (16)	0.0246 (13)	-0.0072 (13)	0.0021 (11)
Cl2	0.0459 (11)	0.0978 (17)	0.0739 (14)	-0.0247 (12)	0.0002 (10)	-0.0134 (13)
N1	0.045 (4)	0.049 (4)	0.038 (4)	0.004 (3)	0.000 (3)	0.001 (3)
N2	0.055 (4)	0.057 (4)	0.055 (4)	0.015 (3)	-0.004 (3)	0.001 (3)
N3	0.042 (4)	0.054 (4)	0.055 (4)	0.010 (3)	-0.003 (3)	0.008 (3)
N4	0.050 (4)	0.043 (4)	0.056 (4)	-0.008 (3)	0.000 (3)	-0.004 (3)
N5	0.059 (4)	0.057 (4)	0.044 (4)	-0.010 (3)	0.002 (3)	-0.017 (3)
N6	0.041 (4)	0.057 (4)	0.055 (4)	-0.016 (3)	-0.004 (3)	-0.007 (3)
01	0.040 (3)	0.083 (4)	0.049 (3)	0.017 (3)	0.000 (2)	0.002 (3)
O2	0.108 (5)	0.067 (4)	0.057 (4)	0.024 (4)	-0.003 (4)	-0.006 (3)
O3	0.096 (5)	0.045 (3)	0.064 (4)	0.025 (3)	-0.007 (3)	-0.009 (3)

Cl1—C19		1.735 (8)	C12-	—C13	1.4	95 (11)
Geometric pa	rameters (Å, °)					
C40	0.050 (5)	0.055 (5)	0.045 (5)	-0.010 (4)	0.002 (4)	0.004 (4)
C39	0.049 (5)	0.062 (5)	0.050 (5)	-0.006 (4)	0.007 (4)	0.000 (4)
C38	0.042 (4)	0.063 (5)	0.041 (4)	0.003 (4)	0.004 (3)	-0.002 (4)
C37	0.057 (5)	0.074 (6)	0.040 (5)	-0.004 (4)	0.010 (4)	-0.003 (4)
C36	0.050 (5)	0.044 (4)	0.049 (5)	0.004 (3)	0.004 (4)	0.000 (4)
C35	0.044 (4)	0.038 (4)	0.047 (4)	-0.003 (3)	0.002 (3)	-0.003 (3)
C34	0.049 (5)	0.062 (5)	0.042 (5)	0.000 (4)	0.004 (4)	0.001 (4)
C33	0.046 (5)	0.068 (6)	0.050 (5)	0.005 (4)	0.005 (4)	-0.014 (4)
C32	0.059 (5)	0.058 (5)	0.055 (5)	-0.012 (4)	-0.002 (4)	-0.014 (4)
C31	0.047 (4)	0.054 (5)	0.043 (5)	-0.006 (4)	-0.009 (3)	-0.008 (4)
C30	0.042 (4)	0.043 (5)	0.078 (6)	0.000 (3)	0.012 (4)	0.001 (4)
C29	0.035 (4)	0.073 (6)	0.033 (4)	0.004 (4)	0.005 (3)	0.005 (4)
C28	0.061 (5)	0.062 (5)	0.043 (5)	0.001 (4)	0.009 (4)	0.006 (4)
C27	0.071 (6)	0.035 (4)	0.058 (6)	-0.005 (4)	0.006 (4)	-0.012 (4)
C26	0.050 (5)	0.053 (5)	0.042 (4)	-0.002 (4)	-0.010 (3)	-0.007 (4)
C25	0.045 (4)	0.050 (5)	0.046 (5)	0.001 (4)	-0.005 (3)	-0.004 (4)
C24	0.048 (4)	0.078 (6)	0.043 (5)	0.006 (4)	0.002 (3)	0.007 (4)
C23	0.054 (5)	0.052 (5)	0.052 (5)	-0.005 (4)	0.009 (4)	-0.007 (4)
C22	0.055 (5)	0.051 (5)	0.046 (5)	-0.003 (4)	-0.007 (4)	-0.008 (4)
C21	0.038 (4)	0.053 (5)	0.033 (4)	-0.001 (3)	0.003 (3)	-0.005 (4)
C20	0.053 (5)	0.048 (4)	0.050 (5)	0.006 (4)	0.004 (4)	-0.002 (4)
C19	0.041 (4)	0.050 (5)	0.053 (5)	0.000 (3)	0.001 (4)	0.000 (4)
C18	0.045 (5)	0.070 (6)	0.052 (5)	0.006 (4)	-0.008 (4)	0.006 (4)
C17	0.065 (5)	0.059 (5)	0.042 (5)	0.008 (4)	0.006 (4)	-0.012 (4)
C16	0.051 (5)	0.047 (5)	0.066 (6)	0.010 (4)	0.006 (4)	-0.003 (4)
C15	0.032 (4)	0.045 (4)	0.042 (4)	0.006 (3)	0.001 (3)	-0.004 (3)
C14	0.051 (4)	0.054 (5)	0.042 (4)	0.002 (4)	0.001 (3)	-0.003 (4)
C13	0.058 (5)	0.048 (5)	0.058 (6)	0.005 (4)	-0.007 (4)	0.007 (4)
C12	0.060 (5)	0.062 (5)	0.048 (5)	0.005 (4)	-0.010 (4)	0.004 (4)
C11	0.050 (5)	0.039 (4)	0.063 (5)	0.006 (4)	0.010 (4)	0.007 (4)
C10	0.043 (4)	0.046 (4)	0.056 (5)	0.014 (4)	-0.002 (4)	0.001 (4)
С9	0.045 (4)	0.036 (4)	0.039 (4)	0.001 (3)	0.003 (3)	0.002 (3)
C8	0.049 (5)	0.044 (4)	0.068 (6)	0.000 (4)	0.011 (4)	-0.002 (4)
C7	0.043 (4)	0.056 (5)	0.049 (5)	0.000 (4)	-0.001 (4)	-0.013 (4)
C6	0.043 (4)	0.049 (5)	0.048 (5)	-0.002 (4)	0.000 (4)	0.003 (4)
C5	0.037 (4)	0.063 (5)	0.048 (5)	-0.001 (4)	0.003 (3)	-0.004 (4)
C4	0.058 (5)	0.070 (5)	0.034 (4)	0.005 (4)	0.006 (4)	-0.002 (4)
C3	0.045 (5)	0.055 (5)	0.049 (5)	0.008 (4)	0.010 (4)	-0.001 (4)
C2	0.047 (4)	0.051 (5)	0.058 (5)	0.004 (4)	0.009 (4)	-0.010 (4)
C1	0.046 (5)	0.057 (5)	0.044 (5)	-0.001 (4)	0.000 (4)	0.015 (4)
08	0.067 (4)	0.100 (5)	0.049 (3)	-0.013 (3)	0.007 (3)	-0.001 (3)
07	0.066 (4)	0.078 (4)	0.056 (4)	0.006 (3)	0.003 (3)	-0.004 (3)
O6	0.048 (3)	0.082 (4)	0.070 (4)	-0.026 (3)	0.009 (3)	-0.002 (4)
05	0.064 (4)	0.126 (6)	0.048 (4)	-0.026 (4)	0.008 (3)	-0.018 (4)
O4	0.065 (3)	0.043 (3)	0.045 (3)	-0.016 (3)	0.001 (3)	-0.005 (2)

Cl2—C39	1.756 (8)	C12—H12A	0.9700
N1—C8	1.295 (9)	C12—H12B	0.9700
N1—C9	1.352 (8)	C14—C15	1.439 (10)
N2—C13	1.329 (10)	C14—H14	0.9300
N2—N3	1.414 (9)	C15—C16	1.392 (10)
N2—H2	0.8600	C15—C20	1.428 (10)
N3—C14	1.290 (9)	C16—C17	1.358 (11)
N4—C28	1.328 (10)	C17—C18	1.398 (11)
N4—C29	1.357 (9)	С17—Н17	0.9300
N5—C33	1.363 (10)	C18—C19	1.360 (11)
N5—N6	1.389 (8)	C18—H18	0.9300
N5—H5	0.8600	C19—C20	1.357 (10)
N6—C34	1.283 (9)	С20—Н20	0.9300
O1—C1	1.359 (9)	C21—C22	1.380 (10)
O1—C10	1.426 (8)	C21—C29	1.438 (11)
O2—C13	1.221 (10)	C22—C23	1.403 (11)
O3—C16	1.378 (9)	C22—H22	0.9300
O3—H3	0.8200	C23—C24	1.336 (12)
O4—C21	1.346 (8)	С23—Н23	0.9300
O4—C30	1.429 (9)	C24—C25	1.374 (11)
O5—C33	1.214 (9)	C24—H24	0.9300
O6—C36	1.353 (9)	C25—C29	1.405 (10)
O6—H6	0.8200	C25—C26	1.431 (11)
O7—H29	0.8498	C26—C27	1.383 (11)
O7—H30	0.8474	C26—H26	0.9300
O8—H31	0.8522	C27—C28	1.395 (11)
O8—H32	0.8505	С27—Н27	0.9300
C1—C2	1.375 (10)	C28—H28	0.9300
C1—C9	1.420 (10)	C30—C31	1.514 (11)
C2—C3	1.401 (11)	C30—H30A	0.9700
C2—H2A	0.9300	С30—Н30В	0.9700
C3—C4	1.361 (11)	C31—C32	1.504 (11)
С3—НЗА	0.9300	C31—H31A	0.9700
C4—C5	1.410 (10)	С31—Н31В	0.9700
С4—Н4	0.9300	C32—C33	1.509 (11)
C5—C6	1.407 (10)	С32—Н32А	0.9700
C5—C9	1.412 (9)	С32—Н32В	0.9700
C6—C7	1.365 (10)	C34—C35	1.414 (10)
С6—Н6А	0.9300	C34—H34	0.9300
С7—С8	1.418 (11)	C35—C40	1.377 (10)
С7—Н7	0.9300	C35—C36	1.440 (10)
C8—H8	0.9300	C36—C37	1.359 (11)
	1.534 (10)	C37—C38	1.380 (11)
CIO-HIOA	0.9700	C3/—H3/	0.9300
C10—H10B	0.9700	C38—C39	1.364 (11)
C11—C12	1.502 (10)	C38—H38	0.9300
	0.9700	C39—C40	1.367 (11)
CII—HIIR	0.9700	C40—H40	0.9300
C8—N1—C9	118.1 (6)	C19—C18—H18	121.0

	100 5 (7)	G17 G10 H10	101 0
C13—N2—N3	120.5 (7)	C17—C18—H18	121.0
C13—N2—H2	119.7	C20—C19—C18	124.2 (7)
N3—N2—H2	119.7	C20—C19—C11	118.2 (6)
C14—N3—N2	115.7 (6)	C18—C19—C11	117.6 (6)
C28—N4—C29	117.4 (7)	C19—C20—C15	117.9 (7)
C33—N5—N6	119.6 (6)	С19—С20—Н20	121.0
C33—N5—H5	120.2	C15—C20—H20	121.0
N6—N5—H5	120.2	O4—C21—C22	126.4 (7)
C34—N6—N5	116.2 (6)	O4—C21—C29	114.7 (6)
C1—O1—C10	116.4 (6)	C22—C21—C29	118.9 (7)
С16—О3—Н3	109.5	C21—C22—C23	120.2 (7)
C21—O4—C30	115.9 (6)	C21—C22—H22	119.9
С36—О6—Н6	109.5	С23—С22—Н22	119.9
H29—O7—H30	100.0	C24—C23—C22	121.5 (8)
H31—O8—H32	95.0	С24—С23—Н23	119.2
O1—C1—C2	125.5 (7)	С22—С23—Н23	119.2
O1—C1—C9	113.9 (6)	C23—C24—C25	120.0 (8)
C2—C1—C9	120.6 (7)	C23—C24—H24	120.0
C1—C2—C3	120.4 (7)	C25—C24—H24	120.0
C1—C2—H2A	119.8	C24—C25—C29	121.8 (8)
C3—C2—H2A	119.8	C24—C25—C26	122.9 (7)
C4—C3—C2	120.4 (7)	C29—C25—C26	115.3 (7)
С4—С3—Н3А	119.8	C27—C26—C25	119.8 (7)
С2—С3—НЗА	119.8	С27—С26—Н26	120.1
C3—C4—C5	120.5 (7)	С25—С26—Н26	120.1
C3—C4—H4	119.8	C26—C27—C28	119.1 (7)
C5—C4—H4	119.8	C26—C27—H27	120.4
C6—C5—C4	122.9(7)	$C_{28} - C_{27} - H_{27}$	120.4
C6-C5-C9	117.0 (6)	N4—C28—C27	123 4 (7)
C4-C5-C9	120 1 (7)	N4—C28—H28	118.3
C7 - C6 - C5	120.1(7)	C27_C28_H28	118.3
C7-C6-H6A	119.9	N4_C29_C25	124.9 (7)
C5-C6-H6A	110.0	$N_{4} = C_{29} = C_{21}^{21}$	127.5(7)
C_{5}	117.3 (7)	(25 - 62) = (21)	117.5(0)
C6 C7 H7	117.5 (7)	(2) - (2) - (2)	109.6 (6)
$C_{0} = C_{1} = H_{1}$	121.4	04 - 030 - 031	109.0 (0)
$C_{0} - C_{1} - H_{1}$	121.4	$C_{4} = C_{30} = H_{30A}$	109.7
NIC8C/	124.7 (7)	C31—C30—H30A	109.7
NI-C8-H8	117.7	O4 - C30 - H30B	109.7
C/C8H8	11/./	C31—C30—H30B	109.7
NI	122.7 (6)	H30A—C30—H30B	108.2
NI	119.3 (6)	C32—C31—C30	109.2 (6)
C5—C9—C1	118.0 (6)	С32—С31—Н31А	109.8
01	109.6 (6)	С30—С31—Н31А	109.8
O1—C10—H10A	109.8	С32—С31—Н31В	109.8
C11—C10—H10A	109.8	C30—C31—H31B	109.8
O1—C10—H10B	109.8	H31A—C31—H31B	108.3
C11—C10—H10B	109.8	C31—C32—C33	113.7 (7)
H10A—C10—H10B	108.2	C31—C32—H32A	108.8
C12-C11-C10	108.5 (6)	С33—С32—Н32А	108.8

C12—C11—H11A	110.0	С31—С32—Н32В	108.8
C10-C11-H11A	110.0	С33—С32—Н32В	108.8
C12—C11—H11B	110.0	H32A—C32—H32B	107.7
C10-C11-H11B	110.0	O5—C33—N5	122.6 (7)
H11A—C11—H11B	108.4	O5—C33—C32	125.1 (7)
C13—C12—C11	114.9 (7)	N5—C33—C32	112.2 (7)
C13—C12—H12A	108.5	N6—C34—C35	122.2 (7)
C11—C12—H12A	108.5	N6—C34—H34	118.9
C13—C12—H12B	108.5	С35—С34—Н34	118.9
C11—C12—H12B	108.5	C40—C35—C34	119.8 (7)
H12A—C12—H12B	107.5	C40—C35—C36	117.1 (7)
O2—C13—N2	122.0 (8)	C34—C35—C36	123.0 (7)
O2—C13—C12	123.7 (7)	O6—C36—C37	120.0 (7)
N2—C13—C12	114.2 (8)	O6—C36—C35	119.9 (7)
N3—C14—C15	120.2 (7)	C37—C36—C35	120.1 (7)
N3—C14—H14	119.9	C36—C37—C38	121.3 (7)
C15-C14-H14	119.9	С36—С37—Н37	119.3
C16-C15-C20	118.1 (7)	С38—С37—Н37	119.3
C16-C15-C14	124.1 (7)	C39—C38—C37	118.4 (8)
C20-C15-C14	117.8 (6)	С39—С38—Н38	120.8
C17—C16—O3	117.2 (7)	С37—С38—Н38	120.8
C17—C16—C15	121.7 (7)	C38—C39—C40	122.0 (7)
O3—C16—C15	121.1 (7)	C38—C39—Cl2	119.1 (6)
C16—C17—C18	120.1 (7)	C40—C39—Cl2	118.7 (6)
С16—С17—Н17	119.9	C39—C40—C35	120.8 (7)
C18—C17—H17	119.9	C39—C40—H40	119.6
C19—C18—C17	118.0 (7)	C35—C40—H40	119.6
C13—N2—N3—C14	-175.2 (7)	C14—C15—C20—C19	-179.0 (7)
C33—N5—N6—C34	176.2 (7)	C30—O4—C21—C22	-3.2 (10)
C10-O1-C1-C2	3.4 (11)	C30—O4—C21—C29	176.2 (6)
C10-O1-C1-C9	-175.8 (6)	O4—C21—C22—C23	178.3 (7)
O1—C1—C2—C3	178.7 (7)	C29—C21—C22—C23	-1.0 (11)
C9—C1—C2—C3	-2.1 (11)	C21—C22—C23—C24	1.9 (12)
C1—C2—C3—C4	0.7 (12)	C22—C23—C24—C25	-0.7 (12)
C2—C3—C4—C5	1.2 (12)	C23—C24—C25—C29	-1.3 (12)
C3—C4—C5—C6	179.6 (7)	C23—C24—C25—C26	-179.4 (7)
C3—C4—C5—C9	-1.5 (12)	C24—C25—C26—C27	177.0 (8)
C4—C5—C6—C7	179.5 (7)	C29—C25—C26—C27	-1.2 (11)
C9—C5—C6—C7	0.7 (11)	C25—C26—C27—C28	0.2 (12)
C5—C6—C7—C8	-0.3 (11)	C29—N4—C28—C27	-2.6 (12)
C9—N1—C8—C7	0.6 (11)	C26—C27—C28—N4	1.7 (13)
C6—C7—C8—N1	-0.4 (12)	C28—N4—C29—C25	1.5 (11)
C8—N1—C9—C5	-0.3 (10)	C28—N4—C29—C21	-178.5 (7)
C8—N1—C9—C1	-179.6 (7)	C24—C25—C29—N4	-177.9 (7)
C6—C5—C9—N1	-0.4 (11)	C26—C25—C29—N4	0.3 (11)
C4—C5—C9—N1	-179.3 (7)	C24—C25—C29—C21	2.1 (11)
C6—C5—C9—C1	179.0 (7)	C26—C25—C29—C21	-179.7 (7)
C4—C5—C9—C1	0.1 (11)	O4—C21—C29—N4	-0.3 (9)
01—C1—C9—N1	0.4 (10)	C22—C21—C29—N4	179.1 (6)

C2-C1-C9-N1	-178.9 (7)	O4—C21—C29—C25	179.7 (6)
O1—C1—C9—C5	-179.0 (6)	C22—C21—C29—C25	-0.9 (10)
C2—C1—C9—C5	1.7 (11)	C21—O4—C30—C31	-177.9 (6)
C1	178.9 (6)	O4—C30—C31—C32	179.1 (6)
O1-C10-C11-C12	-178.3 (7)	C30—C31—C32—C33	176.8 (7)
C10-C11-C12-C13	-177.6 (7)	N6—N5—C33—O5	-1.8 (12)
N3—N2—C13—O2	-1.4 (12)	N6—N5—C33—C32	176.2 (7)
N3—N2—C13—C12	-177.1 (7)	C31—C32—C33—O5	-39.6 (12)
C11—C12—C13—O2	40.8 (12)	C31—C32—C33—N5	142.4 (7)
C11—C12—C13—N2	-143.5 (8)	N5—N6—C34—C35	-179.3 (7)
N2—N3—C14—C15	-179.0 (6)	N6-C34-C35-C40	177.8 (7)
N3-C14-C15-C16	4.3 (11)	N6-C34-C35-C36	-6.8 (12)
N3-C14-C15-C20	-175.3 (7)	C40—C35—C36—O6	177.6 (7)
C20-C15-C16-C17	-1.8 (11)	C34—C35—C36—O6	2.1 (11)
C14—C15—C16—C17	178.6 (8)	C40—C35—C36—C37	-2.2 (10)
C20-C15-C16-O3	179.4 (7)	C34—C35—C36—C37	-177.8 (7)
C14—C15—C16—O3	-0.3 (11)	O6—C36—C37—C38	-179.3 (7)
O3—C16—C17—C18	-179.5 (7)	C35—C36—C37—C38	0.6 (12)
C15-C16-C17-C18	1.6 (13)	C36—C37—C38—C39	-1.4 (12)
C16-C17-C18-C19	-0.9 (12)	C37—C38—C39—C40	4.0 (12)
C17-C18-C19-C20	0.5 (12)	C37—C38—C39—Cl2	179.4 (6)
C17-C18-C19-Cl1	-179.8 (6)	C38—C39—C40—C35	-5.9 (12)
C18—C19—C20—C15	-0.7 (12)	Cl2—C39—C40—C35	178.7 (6)
Cl1—C19—C20—C15	179.6 (5)	C34—C35—C40—C39	-179.5 (7)
C16—C15—C20—C19	1.3 (10)	C36—C35—C40—C39	4.8 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2···O7 ⁱ	0.86	2.07	2.836 (9)	147
N5—H5···O8 ⁱⁱ	0.86	2.05	2.820 (9)	149
O3—H3…N3	0.82	1.92	2.630 (8)	144
O6—H6…N6	0.82	1.91	2.633 (9)	147
O7—H29…N1	0.85	2.05	2.876 (8)	165
O7—H30···O5 ⁱⁱⁱ	0.85	2.06	2.839 (9)	153
O8—H31…N4	0.85	2.04	2.872 (9)	166
O8—H32···O2 ^{iv}	0.85	1.99	2.845 (9)	180
C7—H7···O6 ⁱⁱⁱ	0.93	2.53	3.267 (10)	137
C27—H27···O3 ^v	0.93	2.56	3.303 (10)	137
C19—Cl1···Cg5 ^{vi}	1.735 (8)	3.632 (4)	4.127 (9)	93.8 (3)
C39—Cl2···Cg1 ^{vii}	1.756 (8)	3.616 (4)	4.109 (9)	93.3 (3)

Symmetry codes: (i) *x*-1/2, *y*+1/2, *z*; (ii) *x*+1/2, *y*+1/2, *z*; (iii) *x*+1/2, -*y*+1/2, *z*-1/2; (iv) *x*, -*y*, *z*+1/2; (v) *x*, -*y*, *z*+1/2; (vi) *x*, -*y*+1, *z*-1/2; (vii) *x*+1/2, -*y*+1/2, *z*+1/2.

